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What is Reinforcement Learning?

¢ Learning from interaction
e Goal-oriented learning

¢ Learning about, from, and while interacting with an
external environment

e Learning what to do—how to map situations to actions
—so0 as to maximize a numerical reward signal

Lecture 1: Introduction
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Supervised Learning

Training Info = desired (target) outputs

Supervised
Inputs Learning Outputs
System

Error = (target output — actual output)



Reinforcement Learning

Training Info = evaluations (“rewards” / “penalties”)

Reinforcement
Inputs Learning
System

Outputs (“actions”)

Objective: get as much reward as possible

Complete Agent

e Temporally situated
¢ Continual learning and planning
¢ Object is to affect the environment

e Environment is stochastic and uncertain

action

Key Features of RL

e Learner is not told which actions to take
e Trial-and-Error search
e Possibility of delayed reward

e Sacrifice short-term gains for greater long-term
gains

¢ The need to explore and exploit.

¢ Considers the whole problem of a goal-directed
agent interacting with an uncertain environment

6

A Less-Misleading Agent View

external sensations

¥

agent



Elements of RL

Model of
environment

Policy: what to do

Reward: what is good

Value: what is good because it predicts reward

Model: what follows what

An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:

State V(s) — estimated probability of winning

2. Now play lots of games. To pick
our moves, look ahead one step:

. current state
0 loss
. various possible

) next states
0 draw a

Just pick the next state with the highest
estimated prob. of winning — the largest V(s);
a greedy move.

But 10% of the time pick a move at random;
an exploratory move.
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An Extended Example: Tic-Tac-Toe
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RL Learning Rule for Tic-Tac-Toe

starting position

opponent's move
our move
opponent's move
our move
opponent's move

s — the state before our greedy move

our move s’ — the state after our greedy move
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We increment each V(s) toward V(s') — a backup:
V(s) < V(s)+ a[V(s') - V(s)]

a small positive fraction, e.g., a=.1

the step - size parameter
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How can we improve this T.T.T. player?

o Take advantage of symmetries
« representation/generalization
« How might this backfire?
e Do we need “random” moves? Why?
« Do we always need a full 10%?
e Can we learn from “random” moves?
e Can we learn offline?
o Pre-training from self play?

o Using learned models of opponent?
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How is Tic-Tac"Toe Too Easy?

Finite, small number of states

One-step look-ahead is always possible

State completely observable
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e.g. Generalization

Table Generalizing Function Approximator
State \Y State \%
S
5,
83
Train
here

Some Notable RL Applications

¢ TD-Gammon: Tesauro
¢ world’s best backgammon program
¢ Elevator Control: Crites & Barto
¢ high performance down-peak elevator controller
e Inventory Management: Van Roy, Bertsekas, Lee & Tsitsiklis
¢ 10-15% improvement over industry standard methods
¢ Dynamic Channel Assignment: Singh & Bertsekas, Nie & Haykin

e high Eerformance assignment of radio channels to mobile
telephone calls

e More ...



TD-Gammon

Tesauro, 1992-1995
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Start with a random network
Play very many games against self
Learn a value function from this simulated experience

This produces arguably the best player in the world
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Performance Comparison
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Elevator Dispatching
Crites and Barto, 1996
10 floors, 4 elevator cars

STATES: button states; positions,
directions, and motion states of
[] cars; passengers in cars & in halls
[] ACTIONS: stop at, or go by, next floor

REWARDS: roughly, -1 per time step
for each person waiting
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Conservatively about 10  states
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Autonomous Helicopter Flight
A. Ng, Stanford, H. Kim, M. Jordan, S. Sastry, Berkeley



Quadrupedal Locomotion Learning Control for Dynamically
Stable Walking Robots

Russ Tedrake, Teresa Zhang, H. Sebastian Seung, MIT

Nate Kohl & Peter Stone, Univ of Texas at Austin

All training done with physical robots: Sony Aibo ERS-210A

Before learning After 1000 trials, or about 3 hours

http://hebb.mit.edu/~russt/robots
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Grasp Control Some RL History

R. Platt, A. Fagg, R. Grupen, Univ. of Mass Amherst
Trial-and-Error Temporal-difference Optimal control,

learning learning value functions
Thorndike (W) Hamilton (Physics)
1911 Secondary 1800s
reinforcement (¥)
Shannon
Minsky Samuel Bellman/Howard (OR)
Klopf Holland
Witten Werbos
Barto et al.
Sutton
Watkins
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MENACE (Michie 1961)

“Matchbox Educable Noughts and Crosses Engine”
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The Course

We will follow the book, then read a collection of more recent
papers on later developments

Rlead the reading assignment for the each class before that
class!

Written home-works: many of the non-programming
assignments in each chapter, plus others.

Programming exercises: require you to implement many of the
algorithms discussed in the book. Details to come...

Closed-book, in-class midterm; closed-book 2-hr final

Grading: 30% written home-works; 25% programming
exercises; 25% final; 20% midterm

See the web for more details: http://www-anw.cs.umass.edu/~barto/
courses/cs687/
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The Book

e Part I: The Problem
e Introduction
¢ Evaluative Feedback
¢ The Reinforcement Learning Problem
o Part II: Elementary Solution Methods
¢ Dynamic Programming
* Monte Carlo Methods
o Temporal Difference Learning
e Part III: A Unified View
¢ Eligibility Traces
¢ Generalization and Function Approximation
¢ Planning and Learning
¢ Dimensions of Reinforcement Learning
e Case Studies
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Next Class

e Introduction continued and some case studies
¢ Read Chapters 1 & 2

e Do exercises 1.1 — 1.5: to hand in Tues 2/7

28

28



